Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes
نویسندگان
چکیده
The stability and convergence properties of the mimetic finite difference method for diffusion-type problems on polyhedral meshes are analyzed. The optimal convergence rates for the scalar and vector variables in the mixed formulation of the problem are proved.
منابع مشابه
The mimetic finite difference discretization of diffusion problem on unstructured polyhedral meshes
We study the mimetic finite difference discretization of diffusion-type problems on unstructured polyhedral meshes. We demonstrate high accuracy of the approximate solutions for general diffusion tensors, the second-order convergence rate for the scalar unknown and the first order convergence rate for the vector unknown on smooth or slightly distorted meshes, on non-matching meshes, and even on...
متن کاملConvergence of Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes
The main goal of this paper is to establish the convergence of mimetic discretizations of the firstorder system that describes linear stationary diffusion on general polyhedral meshes. The main idea of the mimetic finite difference (MFD) method is to mimic the underlying properties of the original continuum differential operators, e.g. conservation laws, solution symmetries, and the fundamental...
متن کاملConvergence Analysis of the mimetic Finite Difference Method for Elliptic Problems with Staggered Discretizations of Diffusion Coefficients
We propose a family of mimetic discretization schemes for elliptic problems including convection and reaction terms. Our approach is an extension of the mimetic methodology for purely diffusive problems on unstructured polygonal and polyhedral meshes. The a priori error analysis relies on the connection between the mimetic formulation and the lowest order Raviart–Thomas mixed finite element met...
متن کاملA new discretization methodology for diffusion problems on generalized polyhedral meshes
We develop a family of inexpensive discretization schemes for diffusion problems on generalized polyhedral meshes with elements having non-planar faces. The material properties are described by a full tensor. We also prove superconvergence for the scalar (pressure) variable under very general assumptions. The theoretical results are confirmed with numerical experiments. In the practically impor...
متن کاملA family of mimetic finite difference methods on polygonal and polyhedral meshes
A family of inexpensive discretization schemes for diffusion problems on unstructured polygonal and polyhedral meshes is introduced. The material properties are described by a full tensor. The theoretical results are confirmed with numerical experiments.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 43 شماره
صفحات -
تاریخ انتشار 2005